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Longitudinal electron oscillations in a bounded plasma slab immersed in a magnetic field are analyzed using 
hydrodynamic equations. Resonance conditions are given for an arbitrary density distribution. In the zero 
magnetic field limit, the present results may account for some main features of Tonks' and Dattner's ex­
periments. The behavior of these resonances and the possibility of damping due to thermal effects is dis­
cussed. It is found that the magnetic field tends to "push" the perturbations further into regions near the 
walls and keep the bulk of the plasma free from oscillations. 

I. INTRODUCTION 

IN earlier experiments, Tonks1 and Dattner2 have 
found that a plasma column shows several reso­

nances upon the incidence of a microwave. The theory 
of Herlofson,3 assuming a uniform density and zero 
temperature, predicts one resonance. Gould4 and others5 

have found that finite electron temperature introduces 
additional resonances. The spacing between these reso­
nances are, however, about 100 times too small. By 
assuming a particular density distribution, Weissglass6 

has recently shown that the spacing is substantially 
increased by the presence of a density gradient. 

When a longitudinal magnetic field is applied, Tonks,1 

Messiaen and Vandenplas,7 and Crawford, Kino, and 
Cannara8 have observed that the main resonance peak 
is splitted into two peaks. This phenomenon has been 
approximatively explained by Astrom9 and others.7,8 

Here again, the behavior of the additional resonances is 
not understood theoretically and is little known 
experimentally.2'7 

The purpose of this paper is to bring out the nature 
and the main properties of these additional resonances. 
We shall consider longitudinal electrostatic oscillations 
in a plasma slab, having an arbitrary density distribu­
tion, immersed in a homogeneous magnetic field. (The 
plane geometry can well represent the cylindrical 
geometry with a longitudinal magnetic field for the 
present purposes.) 

In the zero magnetic-field limit, our result is able to 
account for some main features of Dattner's experiment. 

*This work has been supported by the Swedish Council of 
Atomic Research. 
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The effect of a longitudinal magnetic field on these 
resonances is derived. The detailed properties of these 
resonances and eventual damping is discussed. It should 
be mentioned that a number of authors10 have inde­
pendently presented calculations accounting for the 
additional resonances.2 While these authors are mainly 
concerned with a good agreement between theory and 
experiment, the present paper emphasizes the physical 
understanding of these resonances. 

Before going into details, it is useful to have a simple 
physical picture of the additional resonances introduced 
by the finite electron temperature for a uniform density 
distribution. The resonance frequency co obeys4*5 

co2=<opm
2+ (n+h)V{KT/meD), (1.1) 

o>Pm2=e2N0m/ine€o, #=0,1,2, . . ., (1.2) 

where K is the Boltzmann constant, T the electron 
temperature, e the electronic charge, me the electron 
mass, 2L the thickness of the plasma slab, e0 the di­
electric constant in vacuum, and Nom is the maximum 
density in the plasma. Let us now perturb the uniform 
plasma (Fig. 1). The displaced electrons are restored by 
Coulomb attraction, corresponding to the upm

2 term in 
(1.1), and by the associated pressure gradient, which 
corresponds to the last term in (1.1) with n=0. The 
latter force is responsible for the additional resonances, 
although it is too small to explain the experimental 
data. In a nonuniform plasma, the perturbations may be 
confined to a small region, e.g., near the walls.6 In that 
region, the pressure-gradient force is no longer small as 
compared to the Coulomb force; the spacing may be 

FIG. 1. Uniform density distribution super­
imposed by a ground-state mode electron-
density perturbation. 

10 See papers by P. Weissglass, P. E. Vandenplas, and A. M. 
Messiaen, R. B. Hall, and F. Crawford and G. Kino, in Proceed­
ings of the Seventh Conference on Ionization Phenomena in 
Gases, Paris, 1963 (unpublished); see also Microwave Laboratory 
Report No. 1045, Stanford University, 1963 (unpublished). The 
most complete numerical calculation has recently been given by 
J. C. Nickel, J. V. Parker, and R. W. Gould, Phys. Rev. Letters 
11, 183 (1963). 
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increased considerably due to the presence of a non­
uniform density. 

II. RESONANCE CONDITIONS FOR A 
NONUNIFORM PLASMA 

Our plasma slab has a thickness of 2L, a density 
which only varies along x, and is immersed in a mag­
netic field B, directed along z. We shall, as in the earlier 
works,4-6 use the hydrodynamical equations for an 
electron gas: 

rne(dY/dt) = -e®-eyXB-KTN-1VN (2.1) 

dN/dt+divN\=0 (2.2) 

div<S=-(e/€o)(iV-iVo). (2.3) 

Here, v is the macroscopic electron velocity, N the elec­
tron density, No the ion density, and (S the electric 
field. For simplicity, we have assumed T= const. In a 
uniform plasma temperature variations are known11 to 
increase the last term in (1.1) by a factor of 3. We now 
replace the variables F in (2.1)—(2.3) by FQ+FI exp(zW), 
where the index 1 denotes perturbation, and linearize. 
Equations (2.1), (2.2), and (2.3) now becomes 

. €o 

—o)2}i=iu—o)p
2(x)vVi—icojiXwc 

e 
VNQ 

+W2v d i v j i - W2 divji, (2.4) 
No 

V2F1=(^/€oaj)divj1 , (2.5) 
where 

cop
2(x) = e2No(x)/me€Q, coc=eR/me, ( . 

W2=KT/mey ji=iVoVi, Vo=0. 

Here, we have put @i= — VFi , where V is the electro­
static potential. In this way, we only consider longi­
tudinal plasma oscillations and neglect their coupling 
to the external electromagnetic fields. 

In the following we shall assume that d/dy=d/dz=0 
in (2.4) and (2.5). In order to justify the validity of this 
assumption let us replace the variables Fi in (2.4) and 
(2.5) by its Fourier component Fi(x) exp(ikyy+ikgz). 
Inserting this into (2.4) and (2.5) it can be found that 
our assumption is good if the inequalities 

o)p
2(x) o)c 

kyW
2«a>2; ky

2, ky
2 «kx

2; *„—«*», (2.7) 
O) 2 CO 

together with a similar set of inequalities obtained by 
changing kv in (2.7) to kz, are satisfied. Here, kx=d/dx 
is much larger than 1/Z, as will be found later. Further, 
we are interested in the dipole or the quadrupole reso­
nances in a cylindrical plasma. In the slab approxima­
tion these resonances correspond to ky^l/L, 2/L. 
Therefore, (2.7) is in general very well satisfied. Equa-

11 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949). 

tions (2.4) and (2.5) now yield 

1 
i i / H [«*—«p2(*)—«0

2l;i* 
W2 

No eo) 
= jiJ+i—No(x)<&l9(0), (2.8) 

No me 

where the prime denotes differentiation with respect to 
x and the subscript x denotes the x component. 

In order to simplify the problem further, we shall 
assume that the wavelength of the perturbation k^x is 
much smaller than the scale of the plasma inhomo-
geneity NO/NQ'. The assumptions and simplifications 
made hitherto are consistent with the WKB approxi­
mation which will be employed. The homogeneous part 
of (2.8), which determines the eigenmodes, now becomes 

jiS+W^l<*-<*p*(x)-ufiji,= 0. (2.9) 

Since this equation is in the Strum-Liouville form, its 
eigenvalue o)2 is always real. 

I t should be pointed out that (2.9) is also valid for a 
cylindrical plasma column immersed in a longitudinal 
magnetic field, if the same approximations as those 
given in the preceding paragraph are used. In that case, 
x in (2.9) will represent the radius. However, the experi­
ments2*7 also contain cases for which B is perpendicular 
to the plasma column. Since those cases cannot be ap­
proximated by the plane geometry, they will be left out. 

The surface x—xh at which the plasma dielectric 
constant vanishes, a)2—up

2(xt)=a)c
2, is of vital physical 

importance. Recognizing this, (2.9) can be transformed 
to 

u"+k2u=0, k = \D-l[E-V{x)Jl2, k>0, (2.10) 

w"~fc%=0, K=\D-1[:V(X)-E2112, K>0, (2.11) 

where 
a?2—coc

2 

/ i . = « , £ = , (2.12) 

No(x) W 
V(x)= , Xz>= . (2.13) 

Nom 0)pm 

If we interpret w a s a time-independent Schrodinger 
wave, (2.10) and (2.11) then describe the discrete 
energy levels £ of a quantum-mechanical particle 
trapped in a potential well given by the walls and V(x), 
the density profile. In plasma termSj standing plasma 
waves are confined by V(x) and the walls. Outside V(x) 
the wave decays within a plasma wave length (de 
Broglie wave length in the quantum case). Thus, the 
resonances1-2 may be viewed as the ground and excited 
states of a "plasma-wave ensemble." The situation is 
illustrated in Fig. 2. 

In the following we shall assume that k(x) varies 
slowly over a local plasma wavelength lir/k. Hence, 
(2.10) and (2.11) can be solved by a WKB approxima-
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FIG. 2. "Energy levels" of a particle 
trapped in a potential well given by the 
walls and the density profile V(x). 

tion.12 Here, we shall only write down the essential part 
of the derivation which will be useful in this paper 
and leave the details to the textbook. Following Schiff, 
we shall first express the solutions of (2.10) and (2.11) 
in the X\= (xt—x) coordinate, in which the "classical 
turning point" V(xt) = E is the origin (Fig. 2): 

*i(*i) = £i1/2£-1/2D4+/i/3(£i)+^-Jr_i/3(?i)] , 

m (2.14) 

Jo 
kdxi, 

mix,) = f j1/*Ar1/,[5+Z"i/gtti)+B_/_i/,(fO] : 

2 = / K(lXi, 
(2.15) 

where / is the Bessel function and / is the modified 
Bessel function. We have assumed that 

# = ^ 1 ( 1 + 0 * ! + . . . ) , c=(XI>^)-1/«> (2.16) 

i.e., the turning point is linear. Further, (2.14) is valid 
for #i>0 and (2.15) for #i<0 in Fig. 2. A smooth 
connection of u\ and u2 at xt yields B+——A+ and 
B-—A-. Further, at a number of Debye length away 
from xt, the asymptotic formulas of the Bessel functions 
may be used. We require that the exponentially in­
creasing part of U2 vanishes in region II and obtain 
B+= —B— We now get A+=A- and hence ui(xi) takes 
the asymptotic form of k~1/2 cos(£i—7r/4) for #i<0. 
Returning to the x coordinate and using the boundary 
condition that the plasma current vanishes at the wall, 
#i(a;=0) = 0, one gets the general resonance condition 

&-!*•= ( » + J ) T , »=0,1,2, . . . 

Upon substituting £i, this relation becomes 

(2.17) 

J [ £ - V(x)J!*dx= (n+3/4:)7r\D, (2.18) 
Jo 

E-V(xt) = 0. (2.19) 

IH. RESONANCE CHARACTERISTICS FOR A 
TRAPEZOIDAL DENSITY PROFILE 

For arbitrary density distributions, (2.18) needs a 
numerical treatment. In the following we shall confine 
ourselves to a trapezoidal density distribution. The 
density is constant throughout the centerpart of the 
plasma slab. At a distance / from the walls, it decreases 

12 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1955), pp. 185-190. 

linearly with a slope g~x (see Fig. 3). Such a density dis­
tribution should give us the general features of the reso­
nances characteristics in an actual experiment. It 
should be pointed out that for this particular distribu­
tion, (2.14) and (2.15) are exact rather than a WKB 
approximation. 

The trapezoidal density profile is symmetric with 
respect to x—L, For x<L, it is 

(3.1) 
V(x) = l, f<x<L, 

V(x)=V(0)+x/g, x<f. 

Using (3.1), (2.18) and (2.19) yield 

£=(" 2 -co c
2 ) /co^-F(0) 

+l^(n+l)\D/gJl\ £ < 1 , (3.2) 

These results are very accurate even for small n at 
which the WKB method formally fails. Actually, the 
factor f will be altered only a few percent for n—0 if the 
exact (2.14) is used instead of its asymptotic form. 

In the following we shall discuss the zero magnetic-
field case, coc=0, in more detail. For a>>copw, (2.10) and 
(2.14) are valid for x<f. The solution in this region is 
to be connected to the solution uB of (2.10) in the 
region I? (f<x<2L—f) a t#= / (F ig . 3). Because 7 = 1 
in region B, (2.10) yields 

UB = C smqx-\-D cosqx, 
(3.4) 

where C, D are constants. In order to connect UB with 
ui, we take the leading terms in the expansion12 of u\ 
near #=/=#*: 

ui=A+a+(f— x)JrA-jot-, (3.5) 

«+=(t)1/2(|c)1'3r-Hf), «-=(f)1/2(|c)->/3r-Hf), (3.6) 

where Y is the gamma function. The following condi­
tions determine the constants: (1) uB'(x=L) = 0. We 
require that the perturbed density iVi to be antisym­
metric with respect to the center of the slab, x=L, 
because the corresponding modes in a cylindrical case 
are the ones which radiate (positive on one side and 
negative on the other side of the plasma column). 
This condition is fulfilled if Ni(x=L) = 0, which reduces 
to condition (1) by using the linearized form of (2.2) 
and the relation Ntf)ix=jx=UB. (2) The boundary con­
dition ui(x—0) = 0. (3) The continuity condition at 

FIG. 3. The full curve 
shows density distribution. 
The dashed curve shows 
the form of the perturbed 
density distribution, Ni(x), 
as estimated from (2.2) 
and (2.14). 

x(mm) 
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(b) 
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FIG. 4. (a) Position of resonances assuming a density distribu­
tion of Fig. 2 and wpm

2=1.5(cop)av
2. (b) A schematic curve ob­

tained from Dattner's experiment; microwave frequency 1.5 
GHz, mercury temp. 20°C, tube diameter 32.4 mm. PT denotes 
the transmitted power. 

/ , « I ( / ) = « B ( / ) , and finally (4) ui'(f) = uB'(f): These 
four conditions now yield the dispersion relation for 
co> 

/i/sttio) a . 1 cosq(L-f) 2c 
= , £io=— /3/2- (3.7) 

/-i/8(fio) a+ q smq(L-f) 3 

I t is difficult to obtain the resonance frequencies co ex­
plicitly. However, in the limit of q—>0, i.e., co barely 
exceeds copm, (3.7) takes the simple form 

c o s ^ ( Z - / ) = 0 , (3.8) 

which gives 

co8 = a ) p « a + ( » + i ) V C i r / w ( L - y ) 2 ] , co>copw. (3.9) 

For u^oopm, we may approximate F in (2.10) and 
(2.13) by its mean value. The solution of (2.10) is again 
sinusoidal of the type of (3.4) and the resonance condi­
tion is 

^={cc\)av+(n+i)V(kT/mU) , co»(cop)av, (3.10) 

where the ( ) a v denotes the mean value throughout the 
slab. 

In Dattner 's experiments we find typically 
= 3X10%~1, r = 3 X 1 0 4 ° K , and X D - 0 . 0 4 mm. As­

suming 7(0) = 0.1 and g=1.5 mm, (3.2), (3.9) and 
(3.10) then yield the resonances positions shown in 
Fig. 4(a). Compared with a typical experimental curve, 
[Fig. 4(b)] we find a qualitative agreement in spacing. 
The corresponding standing density waves Ni(x) are 
illustrated by the dashed lines in Fig. 3. We see here 
that our n = 0, 1, . . . correspond to the second, third, 
etc. resonances in the experiment. The main resonance 
falls outside our series and is attributed to the dipole 
mode.3 

When a magnetic field is present, co2 is to be replaced 
by co2—coc

2 in (3.9) and (3.10). For a given co, the net 
effect of the magnetic field is to "lift u p " the density 
profile V(x) by an amount of coc

2/co2
pm. Applying this 

operation to Fig. 3, we see that the magnetic field tends 
to "push" the perturbations further into the wall region 
and keep the bulk of plasma unperturbed. 

IV. PHYSICAL INTERPRETATION AND DISCUSSION 

From (3.2) we estimate the spacing between the 
resonances A(co2—coc

2)/copm
2 to be of the order of 

(Wg)2 / 3- Further, it is important to note that electron 
oscillations in an inhomogeneous plasma has a "natural" 
wavelength scale given by the particular combination 
(AD2#)1/3, as is estimated by xt/n given in (3.3). The 
presence of an inhomogeneity of the scale of g puts a 
constraint on the wavelength of plasma oscillations, 
which constraint is absent in a homogeneous plasma. 

The physics involved in the mentioned effect and the 
variation of wavelength with x [See Fig. 3 or (2.14)] 
can be understood somewhat better using the force 
balance model discussed in Sec. I. The perturbation 
near xt (Fig. 3), is mainly restored by the Coulomb 
force, since co>cop(#). As the Coulomb force [_*No{%)~] 
decreases away from xt, the pressure gradient force must 
step in and help up to balance the inertia force (*<*)), 
which is independent of x. The pressure-gradient force 
(oc KT) is increased by decreasing the wavelength and, 
moreover, the local wavelength and its change with x is 
evidently determined by the local Coulomb force (or 
density) and its change with x. The parameters deter-
ming the wavelength are therefore KT, No, and g and 
our findings in the preceeding paragraph is therefore not 
surprising. The situation is illustrated in Fig. 3 with 
n=3, where the wavelength decreases towards the lower 
density region near the wall. 

I t is interesting to note that co is entirely determined 
by the density near the walls as long as co<copm (3.2). 
As soon as co>copW, however, (3.9) and (3.10) shows 
that the spacing in co is determined by the bulk of the 
plasma; the plasma near the wall suddenly looses its 
importance when co passes copm. This may provide a 
"series limit" effect2 if we assume that the radiations 
having co>copw (see Fig. 4) are not observed. The reason 
seems to be that the width of these resonances, as is 
judged from the experimental data (Fig. 4), is much 
larger than the spacing between them; these resonances 
are smeared out. 

Further, for co<copw, the energy of the microwave 
radiation is used to excite a small portion of plasma 
near the walls. The damping (Landau and collisional) 
of plasma oscillations ( ~ absorbed power) is therefore 
small, and the amplitude of the oscillations (^reflected 
power) is large. As co is increased and eventually 
co>coj,m, energy dissipation occurs over a larger volume 
of plasma, the absorbed power is increased and the re­
flected power is decreased. The latter power (amplitude) 
may eventually become so small as to contribute to the 
"series-limit" effect. This physical picture agrees quali­
tatively with the amplitude effects observed.2 

I t is desirable to treat these oscillations from the 
Vlasov equations since an eventual damping effect may 
show up. The problem is very difficult because the un­
perturbed orbit of an electron moving in a zero-order 
electric field («No/No) between two walls is highly 
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complicated. Nevertheless, it is useful to estimate the 
damping of our resonant oscillations using a simple 
physical model which is well known13 to describe the 
Landau damping effect in a homogeneous plasma. Con­
sider a density perturbation which for the moment is 
stationary in space (Fig. 3). After a time {kxW)~x, the 
perturbations having a wavelength of 2ir/kx will be 
"dissipated" by the thermal motion W. We now let the 
perturbations oscillate with a period of or-1. Evidently, 
the damping effect due to temperature motion (Landau 
damping) is not important if the dissipation time 
(kxW)~l is long compared to the oscillation period or1; 

(c^kJV. (4.1) 
13 M. N. Rosenbluth, Danish Atomic Energy Commission, Ris0 

Report No. 18, 1960, p. 197 (unpublished). 

1. INTRODUCTION 

ENORMOUS progress has been made recently in ex­
tending our knowledge of the electronic structure 

of metals through a variety of experiments which deter­
mine certain properties of the Fermi surface.1 Fawcett 
and Reed have recently studied the transverse magneto-
resistance and Hall coefficient of Ni.2,3 By combining 
their results with the results of saturation magnetiza­
tion,4 gyromagnetic resonance,4 and Faraday rotation 
measurements,5 it may be possible to obtain a rather 
precise picture of certain portions of the Fermi surface 
of ferromagnetic Ni. 

* Supported in part by the National Science Foundation. 
t Guggenheim Fellow with a grant-in-aid from the Sloan 

Foundation. 
1 The Fermi Surface, edited by W. A. Harrison and M. B. Webb 

(John Wiley & Sons, Inc. New York, 1960). 
2 E. Fawcett and W. A. Reed, Phys. Rev. Letters 9, 336 (1962). 
8 E. Fawcett and W. A. Reed, Phys. Rev. 131, 2463 (1963). 
4 C. Kittel, Introduction to Solid State Physics (John Wiley & 

Sons, Inc., New York, 1953), pp. 166-171. 
8 G. S. Krinchik and R. D. Naralieva, Zh. Eksperimic Teor. Fiz. 

36,1022 (1959) [translation: Soviet Phys.—JEPT 36, 724 (1959)]. 
G. S. Krinchik and A. A. Gorbacher, Fiz. Metal, i Metalloved. 11, 
203 (1961). 

Let &a;=27r/Xx with \x=2dxt/dn, and make use of 
(3.2) and (3.3) with coc=0. (4.1) can be reduced to 

( l+^oyiy-^co)]} 1 ' ^ i, (4.2) 

where w2
p(0) is the plasma density at the wall. This in­

equality is certainly not strong and in fact the equality 
sign is valid for zero wall density. According to this 
estimate, therefore, thermal damping effects cannot be 
excluded and a further investigation is physically 
significant. 

ACKNOWLEDGMENTS 

I would like to thank Professor N. Herlofson, Dr. A. 
Dattner, and Dr. P. Weissglass for useful discussions. 

Before undertaking an analysis of the experimental 
data we must make certain assumptions about the band 
structure of Ni. All Fermi surface measurements tend to 
be almost too microscopic. Because the measurements 
are confined to the neighborhood of E—EF, one views 
the band structure through a slit that is energetically 
very narrow. Many different band models of En(k), 
where n labels bands, often fit the same data with ap­
parently equal success. It is therefore necessary at the 
outset to attempt to define certain rules for physically 
plausible band structures. If the rules are correct, rea­
sonable models which fit experiment naturally will 
emerge from the analysis. 

For nontransition metals this prescription has been 
carried through with great success by Harrison.6 His 
rule is to apply the nearly free-electron model. Ashcroft7 

has extended the pseudopotential treatment to charac­
terize allowed Fermi surface topologies. We know that 
narrow d bands cannot be treated in this fashion, and 

6 W. Harrison, Ref. 1, p. 28. 
7 N. W. Ashcroft, Phys. Letters 4, 292 (1963). 
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A survey of nonmagnetic band structures near the top of the 3d band is made. The aim is to combine these 
band structures with a wide variety of experimental data to determine the exchange splittings of the d bands 
AEdd and the s-p conduction band AESS. Saturation magnetization, g factors, and high-field Hall data are 
analyzed and compared with the effect of s-d hybridization on the number of s electrons. One concludes that 
if the neck observed in magnetoresistance studies is associated with the same band edge as the Cu neck, 
AEddS^.S eV. I t appears that AE8g<AEdd/2. Recent optical rotation data of Krinchik are interpreted as 
giving a direct measurement of AEdd- The value obtained is (0.6d=0.1) eV, in good agreement with the values 
obtained from other data. 


